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Abstract: Most current research on Alzheimer’s disease (AD) is based on transverse measurements.
Given the nature of neurodegeneration in AD progression, observing longitudinal changes in the
structural features of brain networks over time may improve the accuracy of the predicted transfor-
mation and provide a good measure of the progression of AD. Currently, there is no cure for patients
with existing AD dementia, but patients with mild cognitive impairment (MCI) in the prodromal
stage of AD dementia may be diagnosed. The study of the early diagnosis of MCI and the prediction
of MCI to AD transformation is of great significance for the monitoring of the MCI to AD transforma-
tion process. Despite the high rate of MCI conversion to AD, the neuropathological cause of MCI is
heterogeneous. However, many people with MCI remain stable. Treatment options are different for
patients with stable MCI and those with underlying dementia. Therefore, it is of great significance
for clinical practice to predict whether patients with MCI will develop AD dementia. This paper
proposes an improved algorithm that is based on a convolution neural network (CNN) with residuals
combined with multi-layer long short-term memory (LSTM) to diagnose AD and predict MCI. Firstly,
multi-time resting-state fMRI images were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database for preprocessing, and then an AAL brain partition template was used
to construct a 90 × 90 functional connectivity (FC) network matrix of a whole-brain region of inter-
est (ROI). Secondly, the diversity of training samples was increased by generating an adversarial
network (GAN). Finally, a CNN with residuals and a multi-layer LSTM model were constructed
to automatically classify and predict the functional adjacency matrix. This method can not only
distinguish Alzheimer’s disease from normal health conditions at multiple time points, but can also
predict progressive MCI (pMCI) and stable MCI (sMCI) at multiple time points. The classification
accuracies in AD vs. NC and sMCI vs.pMCI reached 93.5% and 75.5%, respectively.

Keywords: convolutional neural network; resting-state fMRI; brain functional network; AD diagnos-
tic; MCI transformation prediction

1. Introduction

Alzheimer’s disease (AD) is a common, non-reversible, and progressive neurologi-
cal disease characterized by cognitive impairment, with patients’ memory and thinking
abilities gradually becoming impaired over time [1]. Mild cognitive impairment (MCI) is
a transitional stage between normal aging and AD and is characterized by mild memory
and intellectual impairment, with a degree of memory impairment not commensurate
with age [2]. MCI is a preclinical risk factor for AD. The conversion of MCI to AD is
ten times more common than in the general population. According to follow-up studies,
the incidence of transition to AD in patients with MCI is 10 to 15% within 1 year, 40%
within 2 years, and 20 to 53% within 3 years [3]. Therefore, MCI patients can be further
divided into stable MCI (sMCI) and progressive MCI (pMCI) patients. Although there is
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no treatment for MCI and AD patients at present, the study on the early diagnosis of MCI
and the prediction of MCI to AD transformation is of great significance for the monitoring
of the MCI to AD transformation process [4].Research on the diagnosis of AD and the
prediction of the MCI–AD transformation process has become a hotspot for current scholars.
With the development of medical neuroimaging technology, magnetic resonance imaging
(MRI) has provided more effective data support for related scholars to study AD due to
its safety, non-invasiveness, high pixel resolution, and flexible imaging methods [5]. In
the research on AD and the prediction of the MCI–AD transformation process based on
resting-state functional MRI (rs-fMRI) data, the most common method used is to abstract
the pictorial data into numerical data and construct functional brain adjacency networks.
The study of the differences in functional brain adjacency networks between subjects with
AD and normal subjects, as well as between subjects with sMCI and pMCI, has become a
hot topic in recent years. As a potential biomarker, the functional connectivity (FC) matrix
has attracted much attention in many studies [6]. In recent years, strategies for dementia
diagnosis based on deep learning methods have achieved good results over traditional
machine learning methods because deep learning models can extract the differential fea-
ture representation hierarchically and can naturally combine features of different levels
together [7]. Most domestic and foreign research is based on deep learning for horizon-
tal classification diagnosis, such as normal control groups (NC) and AD dichotomies or
NC, MCI, and AD tri-classification studies [8]. Zhang et al. [9] studied the functional
connectivity of the whole brain by calculating Pearson’s correlation coefficients based on
rs-fMRI data and proposed a set of novel features by applying the two-sample t-test on the
correlation coefficients’ matrix to identify the most discriminative correlation coefficients.
Taie et al. [10] proposed a bat-based support vector machine (SVM) parameter optimization
model for the diagnosis of AD in MRI bio-medical images. The model uses MRI to classify
biomedical images and diagnose three kinds of biomedical images: NC, MCI, and AD.
Xu et al. [11] proposed a new deep learning method called the multiple graph Gaussian
embedding model (MG2G), which maps high-dimensional resting-state brain networks
to low-dimensional latent spaces to learn information-rich network features. This model
predicts the progression to AD in patients with MCI and identifies altered areas of the
brain network associated with MCI. According to research, the essence of AD deterioration
is the degeneration of brain nerve function. Therefore, by observing and recording the
longitudinal changes of brain functional links over time, one can detect AD in advance and
take timely intervention measures to prevent the occurrence of AD or slow down the rate of
neurodegeneration. In the longitudinal study, data collected at multiple time points will be
involved [12]. Longitudinal data capture the progression of disease dynamics as opposed
to data at a single point in time. In this paper, convolutional neural networks (CNN) and
recursive neural networks (RNN) with long short-term memory (LSTM) are introduced into
the whole-brain functional networks analysis. A longitudinal joint analysis method of brain
functional networks based on deep learning is proposed. In this method, rs-fMRI images
of NC, sMCI, pMCI, and AD at baseline, 12 months, and 24 months were screened from the
ADNI database to construct and analyze the brain functional networks [13]. During the
progression from MCI to AD, the connectivity patterns between brain regions change, and
the information transmission ability and efficiency of the brain’s functional networks are
impaired. In this paper, the whole-brain fMRI functional network connection was selected
as a marker to carry out the study [14]. The connection characteristics of the whole-brain
functional networks were extracted and combined with the longitudinal characteristics
to classify NC and AD and predict whether MCI patients were developing AD [15]. The
proposed method was validated in ADNI data sets and compared with other classical meth-
ods. The results show that the proposed method has a higher classification and prediction
accuracy and stronger robustness than traditional methods.
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2. Materials and Methods
2.1. Data Selection

The sample data used in this study were from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (http://adni.loni.usc.edu, accessed on 12 January 2022). There were
312 subjects in this study, including 100 for NC, 75 for sMCI, 72 for pMCI, and 65 for AD.
fMRI images were collected at baseline (BL), 12 months, and 24 months in each group.
Prior to the scan, the subjects passed cognitive and behavioral assessments [16]. Sample
demographic information is shown in Table 1.

Table 1. Sample demographic information.

Classified Samples Sex
(Male/Female) Mean Age MMSE CDR

NC-bl
100 50/50 70.80

29.56 0.02
NC-12 m 29.30 0.05
NC-24 m 29.62 0.08

sMCI-bl
75 37/38 72.56

27.56 0.50
sMCI-12 m 26.96 0.52
sMCI-24 m 25.55 0.62

pMCI-bl
72 32/40 75.60

26.52 0.85
pMCI-12 m 24.26 1.22
pMCI-24 m 22.98 2.36

AD-bl
65 30/35 78.20

23.35 3.26
AD-12 m 21.26 3.51
AD-24 m 18.75 3.95

As can be seen from Table 1, with the aggravation of the disease, MMSE scores showed
a downward trend, while CDR showed an upward trend. A statistical analysis of basic
information was obtained by SPSS software [17]. Sample scanners selected from the ADNI
are from Philips Medical Systems. The resting state fMRI scan sequence (EPI) has a total of
140 time points with 48 layers, a magnetic field intensity of 3.0 tesla, a flip angle of 80.0,
a TE of 30.0 ms, a TR of 3000.0 ms, a 64 × 65 matrix, and 6720.0 images with a thickness
of 3.31 mm. The resting-state fMRI image display of NC, AD, sMCI, and pMCI subjects is
shown in Figure 1.
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Figure 1. Resting-state fMRI image display of NC, AD, sMCI, and pMCI subjects. (a) Resting-
state fMRI image display of a NC subject; (b) resting-state fMRI image display of an AD subject;
(c) resting-state fMRI image display of a sMCI subject; and (d) resting-state fMRI image display of a
pMCI subject.

2.2. Image Preprocessing

The process of fMRI data preprocessing includes data format conversion, the removal
of unstable time points, time layer correction, head movement correction, spatial stan-
dardization, the removal of linear drift, filtering, regression covariates, and the removal
of excessive head movement time points [18]. In this paper, the preprocessing process is
basically the same as that of general MRI, but the difference is that the preprocessing in
this paper does not need to be performed smoothly because network analysis requires high
spatial accuracy, and smoothness will affect the activation of adjacent regions of interest
(ROIs). The pretreatment process of fMRI data includes format conversion (DICOM format
to NIFTI), the removal of the first ten unstable time points, time layer correction, head
correction, spatial standardization, linear drift removal, filtering, regression covariates, and
the removal of excessive head movement time points (in order to reduce the influence of
head movements and artifacts, subjects with FD > 0.5 over 2.5 min (50 frames) of data
were excluded). The SPM8 toolbox and the DPARSFA (version 2.2) toolkit were used for
standard preprocessing [19,20]. The pretreatment flow chart is shown in Figure 2.

2.3. Whole-Brain Functional Link Matrix FC

The functional connectivity of the human brain is complex, and the connectivity of
functional brain networks has been widely used in the study of AD. The construction
of brain functional networks based on fMRI data was mainly divided into the following
steps [21,22]:

(1) Nodes (brain regions) were obtained, and the whole brain was divided into 90 ROI
brain regions using the AAL (AAL90) template. Once the partitioning method was selected,
the node was identified.

(2) The whole-brain functional connectivity matrix was obtained using fMRI data and
nodes. We averaged the voxels in each ROI brain region, obtained fMRI time series signals
in each ROI brain region, and constructed the brain functional network of each subject by
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calculating the Pearson correlation coefficient between two ROIs. The Pearson correlation
coefficients of the two time series are shown in Equation (1):

ρX,Y =
Cov(X, Y)

σXσY
=

E((X − µX)(Y − µY))

σXσY
(1)

This is the product of the covariance of the two time series divided by the standard
deviation of the two time series. The results of the Pearson correlation coefficient ρX,Y are
in the range of −1 ≤ ρX,Y ≤ 1. When 0 ≤ ρX,Y ≤ 1, the two time series are positively
correlated or they are negatively correlated. When it equals zero, it means that the two
time series are independent of each other and have no correlation. From this, it can be
concluded that the functions of two groups of brain areas in a certain period of time are
synergistic or antagonistic. By calculating the average time series of each brain region and
calculating the correlation coefficient in pairs, the correlation matrix of the whole brain
during this period of time can be obtained, namely the functional connection matrix [23–25].
The functional connectivity matrix is displayed using the AAL90 template with a total of
90 brain regions, so the connectivity matrix is 90 × 90. Brain network visualization and the
functional connection matrix are shown in Figure 3.
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sMCI; and (d) Brain network visualization and the functional connection matrix of pMCI.
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2.4. The Improved Method Proposed in This Paper

At present, common brain image analysis methods to manually extract the specified
features are mainly based on prior knowledge, which results in great limitations in the
representation of image features. Most brain image analysis studies are focused on image
data analysis at a single time point, which is prone to interference from different individuals.
Longitudinal image data analysis at multiple time points in the time domain can obtain
pathological changes in the pathogenesis process and achieve a more precise diagnosis of
Alzheimer’s disease [26]. Aiming at the above problems, this paper proposes an automatic
analysis and diagnosis model of the multi-temporal brain function network based on the
deep learning method. The functional connectivity (FC) (90 × 90) between brain ROI
regions was used as the original input feature of CNNs. As deep neural networks generally
require a large amount of training data to obtain ideal results, in the case of limited data in
this paper, it is necessary to build a GAN to perform data augmentation for samples [27].
Then, a 1D−CNN model was built to extract spatial features. Then, a three-layer LSTM
model was built to extract and analyze FC features at multiple time points [28,29]. Finally,
the validity of the model was verified against the ADNI data set.

(1) GAN based data augmentation

The GAN model contains two networks: one is a generative network, and the other is
an adversarial network. The role of the generative network is to generate new samples in
the case of given samples, so that the adversarial network cannot distinguish between these
new samples and given samples. Therefore, GAN is generally a model that can generate
synthetic samples that can reflect the target distribution behind real data and achieve the
purpose of data augmentation [30]. The principal diagram of data augmentation by GAN
is shown in Figure 4.
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(2) Spatial feature extraction based on CNNs

Convolutional neural networks (CNN) are very similar to common neural networks
in that they are both made up of neurons with learnable weights and biases. Every neuron
takes some input and generates some dot products, and the output is the fraction of each
classification [31]. The function of the convolution layer is feature extraction. For the brain’s
functional network at each time point, we built a 1D-CNN model with the same structure to
extract spatial features at a single time point [32]. The model structure is shown in Figure 5.

The model includes operations, such as convolution, max-pooling, and short connec-
tion structure. In this paper, the traditional CNN model with a single direction and vertical
structure is improved. In the improved model, two short connection modules are added
to fuse the features of the front and rear layers and enhance the utilization of the front
layer [33].
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Figure 5. The 1D-CNN model structure.

(3) RNN

Recurrent neural networks (RNNs) have achieved great success and are widely used
in many natural language processing (NLP) applications. RNNs are mainly used to process
sequence data. A simple RNN consists of an input layer, a hidden layer, and an output
layer [34]. The RNN can be expanded using a timeline, as shown in Figure 6.
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Figure 6. Diagram of the expansion of a recurrent neural network.

In Figure 6, there is a one-way flow of information from the input unit to the hidden
unit, and another one-way flow of information from the hidden unit to the output unit. In
some cases, the RNNs break the latter restriction, guiding information from the output unit
back to the hiding element. These are called “back projections,” and the input to the hiding
layer also includes the status of the upper hiding layer, where nodes can be self-connected
or interconnected [35].

In Figure 6, after the network receives the input xt at time t, the value of the hidden
layer is st and the output value is ot. The key point is that the value of st not only depends
on xt, it depends on st−1. The calculation method of recurrent neural networks can be
expressed as shown in Equations (2) and (3):

ot = g(Vst) (2)

st = f (Uxt + Wst−1) (3)
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It can be seen from Equations (2) and (3) that the difference between the cyclic layer
and the fully connected layer is that the cyclic layer has a weight matrix W. If Equation (3)
is repeatedly substituted into Equation (2), Equation (4) will be obtained:

ot = g(Vst)
= g(V f (Uxt + Wst−1))
= g(V f (Uxt + W( f (Uxt−1 + Wst−2)))
= g(V f (Uxt + W( f (Uxt−1 + W( f (Uxt−2 + Wst−3))))
= g(V f (Uxt + W( f (Uxt−1 + W( f (Uxt−2 + W( f (Uxt−3 + . . .)))))

(4)

RNNs have problems with gradient disappearance and gradient explosion in the pro-
cess of long sequence training, i.e., information loss caused by long-distance transmission.

(4) LSTM

The long memory network (LSTM) successfully solved the defects of the original
recurrent neural network and became the most popular RNN at present. It has been
successfully applied in many fields, such as speech recognition, image description, and
natural language processing. The hidden layer of the original RNN has only one state, H,
which is very sensitive to short-term input. Thus, let us add another state C, to preserve
the long-term state [36]. This is shown in Figure 7:

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 9 of 16 
 

 

RNNs have problems with gradient disappearance and gradient explosion in the pro-
cess of long sequence training, i.e., information loss caused by long-distance transmission. 
(4) LSTM 

The long memory network (LSTM) successfully solved the defects of the original re-
current neural network and became the most popular RNN at present. It has been suc-
cessfully applied in many fields, such as speech recognition, image description, and nat-
ural language processing. The hidden layer of the original RNN has only one state, H, 
which is very sensitive to short-term input. Thus, let us add another state C, to preserve 
the long-term state [36]. This is shown in Figure 7: 

 
Figure 7. LSTM is expanded in time dimensions. 

The forgetting gate is shown in Equation (5): 

[ ]( )1, , , 1, 2k f k k kf W h x b k t t tσ −= ⋅ + = + +  (5)

fW  an be written as Equation (6): 

1 1

1 , 1, 2

k k
f fh fx

k k

fh k fx k

h h
W W W

x x
W h W x k t t t

− −

−

   
   =      

   
= + = + +，

 (6)

The input gate is shown in Equation (7): 

[ ]( )1, , , 1, 2k i k k ii W h x b k t t tσ −= ⋅ + = + +  (7)

In the above formula, iW  is the weight matrix of the input gate, and ib  is the bias 
term of the input gate [37,38]. 

Next, the cell state kc  used to describe the current input is calculated based on the 
previous output, and the current input is shown in Equation (8): 

[ ]( )1, , , 1, 2k c k k cc W h x b k t t t−= ⋅ + = + + tanh  (8)

This equation calculates the cell state tc  at the current time. It is produced by mul-

tiplying the element of the last cell state 1tc −  by the forgetting gate tf , and then multi-

plying the element of the current input cell state tc  by the input gate tc , and then adding 
the two products shown in Equations (9) and (10): 

1 , , 1, 2k k k k kc f c i c k t t t−= + = + +  (9)

[ ]( )1, , , 1, 2k o k k oo W h x b k t t tσ −= + = + +  (10)

The final output of LSTM is determined by the output gate and cell state shown in 
Equation (11): 

( )=o , , 1, 2k k kh c k t t t= + +tanh  (11)

Figure 8 shows the calculation of the final output of LSTM: 

Figure 7. LSTM is expanded in time dimensions.

The forgetting gate is shown in Equation (5):

fk = σ
(

W f · [hk−1, xk] + bk

)
, k = t, t + 1, t + 2 (5)

W f an be written as Equation (6):

[
W f

][ hk−1
xk

]
=
[
W f hW f x

][ hk−1
xk

]
= W f hhk−1 + W f xxk, k = t, t + 1, t + 2

(6)

The input gate is shown in Equation (7):

ik = σ(Wi · [hk−1, xk] + bi), k = t, t + 1, t + 2 (7)

In the above formula, Wi is the weight matrix of the input gate, and bi is the bias term
of the input gate [37,38].

Next, the cell state c̃k used to describe the current input is calculated based on the
previous output, and the current input is shown in Equation (8):

c̃k = tanh(Wc · [hk−1, xk] + bc), k = t, t + 1, t + 2 (8)

This equation calculates the cell state ct at the current time. It is produced by multi-
plying the element of the last cell state ct−1 by the forgetting gate ft, and then multiplying
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the element of the current input cell state c̃t by the input gate c̃t, and then adding the two
products shown in Equations (9) and (10):

ck = fkck−1 + ik c̃k, k = t, t + 1, t + 2 (9)

ok = σ(Wo[hk−1, xk] + bo), k = t, t + 1, t + 2 (10)

The final output of LSTM is determined by the output gate and cell state shown in
Equation (11):

hk= oktanh(ck), k = t, t + 1, t + 2 (11)

Figure 8 shows the calculation of the final output of LSTM:
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In this paper, we set up a three-layer LSTM model to analyze these sequences and
extract the temporal variation characteristics of the spatial features at different time points,
so as to make comprehensive use of single-time point and multi-time point information
to diagnose and predict AD [39,40]. The design of a CNN combined with the three-layer
LSTM framework is shown in Figure 9.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 8. Final calculation diagram of LSTM. 

In this paper, we set up a three-layer LSTM model to analyze these sequences and 
extract the temporal variation characteristics of the spatial features at different time 
points, so as to make comprehensive use of single-time point and multi-time point infor-
mation to diagnose and predict AD [39,40]. The design of a CNN combined with the three-
layer LSTM framework is shown in Figure 9. 

 
Figure 9. The design of a CNN combined with a three-layer LSTM framework. 

The overall framework for AD diagnosis and MCI prediction is shown in Figure 10. 

Figure 9. The design of a CNN combined with a three-layer LSTM framework.

The overall framework for AD diagnosis and MCI prediction is shown in Figure 10.
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3. Experimental Result

After the format conversion and image preprocessing of the original fMRI data ob-
tained from ADNI in the experiment, the CNN model and LSTM model in this algorithm
were built in the Python environment with the help of the deep learning library Keras and
TensorFlow. The hardware configuration of this experiment is as follows: 8-core, 16-thread,
AMD R7-4800U CPU, 16 G memory, 512 G hard disk, and a 4.2 GHz acceleration frequency.
We performed an experimental test of the proposed multi-time resting-state fMRI brain
functional network study on the ADNI database. We divided the whole data set into five
parts, selected four pieces at a time as the training set, with the remaining one as the test set,
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and randomly selected part of the training set as the verification set. We used the accuracy,
precision, and recall rate to evaluate the effect of this classification. The accuracy, precision,
and recall rate are shown as Equation (12), Equation (13), and Equation (14), respectively.

Accuracy =
TP + TN

TP + TN + FN + FP
100% (12)

Precision =
TP

TP + FP
100% (13)

Recall =
TP

TP + FN
100% (14)

where TP means the prediction is positive, and the reality is positive;
TN means the prediction is negative, and the reality is negative;
FP means the prediction is positive, and the reality is negative; and
FN means the prediction is negative, and the reality is positive.
The loss curve is shown in Figure 12, and the experimental results based on the

convolutional neural network and resting state fMRI brain functional network are shown
in Table 2. The blue line represents the loss curve of the training set, and the orange line
represents the loss curve of the validation set.
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Table 2. Based on the experimental results of longitudinal features.

BL Methods Time Accuracy (%) Precision (%) Recall (%)

NC
VS.
AD

SVM
BL 86.1 83.9 80.0

12 m 87.3 85.5 81.5
24 m 88.5 84.4 83.1

CNN
BL 88.5 85.9 84.6

12 m 89.7 87.5 86.2
24 m 91.0 89.1 87.7

CNN + LSTM
BL 90.3 88.9 86.2

12 m 91.0 87.9 89.2
24 m 93.3 91.0 92.3

sMCI VS. pMCI

SVM
BL 68.0 66.7 69.4

12 m 69.4 68.0 70.8
24 m 70.1 68.4 72.2

CNN
BL 71.4 69.7 73.6

12 m 72.1 70.1 75.0
24 m 73.5 71.4 76.4

CNN + LSTM
BL 74.1 72.4 76.4

12 m 74.8 72.7 77.8
24 m 75.5 73.1 79.2
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In this study, the accuracy, precision, and recall of sMCI and pMCI as well as NC and
AD groups at the baseline period (BL) and 12 months (12 m) and 24 months (24 m) after the
baseline period were compared. As can be seen from the experimental results, there are
significant differences between sMCI and pMCI as well as NC and AD samples over time.
A comparison of the ROC curves of different algorithms is shown in Figure 13.
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Figure 13. Comparison of the ROC curves of different algorithms; (a) comparison of the ROC curves
of different algorithms for NC vs. AD at BL; (b) comparison of the ROC curves of different algorithms
for sMCI vs. pMCI at BL; (c) comparison of the ROC curves of different algorithms for NC vs. AD
at 12 m; (d) comparison of the ROC curves of different algorithms for sMCI vs. pMCI at 12 m;
(e) comparison of the ROC curves of different algorithms for NC vs. AD at 24 m; and (f) comparison
of the ROC curves of different algorithms for sMCI vs. pMCI at 24 m.

4. Conclusions

In this paper, we proposed a multi-time model for the diagnosis and prediction of
Alzheimer’s disease based on a convolutional neural network and a resting-state fMRI
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of the brain functional network. The ADNI dataset was used to screen the original fMRI
data, and the whole-brain resting-state fMRI of the brain functional network was built
after format conversion and image preprocessing. GAN was used to amplify the data as
the initial feature of CNN + LSTM, and the model was verified at multiple time points.
Compared with other classical algorithms, the experimental results show that the algorithm
is effective. AD vs. NC was superior to pMCI vs. sMCI at multiple time points. The
diagnosis effect of Alzheimer’s disease using only the SVM model was the worst, and the
classification effect of the CNN experiment using only CNN was better than that of SVM
at multiple time points. The model based on CNN combined with LSTM proposed by us
was superior to the CNN and SVM methods alone in temporal and spatial analyses. This
indicates that the spatial and temporal analysis algorithm proposed by us is suitable for
the diagnosis and prediction of Alzheimer’s disease.
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